TYPE DPS-800GB A = ATSN-7001044-Y000 = HSTNS-PD05 (HP, Delta en Fujitsu)


Server switching power supply 200-240 VAC/12.15 VDC/82.3 A. Size metal box (without projecting parts) is 21.5 × 8.5 × 5 cm.


At flea market a server switching 12.15V/ 82A power supply was offered for about €20,-. Because it was pretty small and fairly to the price, bought it out of curiosity. Searching for a schematic on the Internet was unsuccessful. The supply appears to be a common HP, Delta and Fujitsu model type DPS-800GB A. Also known as type ATSN-7001044-Y000 and type HSTNS-PD05.


For hams a 13.8 Volt supply voltage is a more usual value than the preset 12.15 Volt. To increase the voltage about eight different circuits can be found on the Internet. Without a schematic it is almost a gamble to design the correct circuit.  By measuring resistance and voltage between the tracks I have attempted to find out how it really works. Unfortunately, the puzzle is not solved.

Top view. Main PCB at the bottom.

With an internal potmeter at the main PCB the voltage can be changed, but therefore the very compact device must be completely disassembled. There was no enthusiasm to do it because literally every empty space is used to cram components. 


Top and bottom pads.


To boot: connect pads 34 - 31. (Large #Ground and #+12V pads are interconnected on the PCB).

On internet one can not find a schematic diagram. I have had contact with an employee of a company that repairs such PSU's, but the schematic may not be revealed. Probably because the manufacturer wants to avoid the solid PSU will be used for something else. Actually, without a schematic it is almost impossible to design a correct modification to change the voltage.  Because pin 32 = remote sense and pin 33 = remote sense return, a satisfactory solution was found by trial and error.
(1) To boot: connect pads 34 and 31.
(2) Install a resistor between pad 32 and ground.

Start with a 1k5 variable resistor. Reduce the value for an increased voltage. At more than 13.8 Volts the PSU switches off when the load is removed. With connected load power can be turned on and due to the built-in soft start it does not switch off. That is important if one has connected a load such as a car battery.

The maximum current is dependent on the set voltage. With more current the supply swithes off. Under load (Vload) the voltage drops some milivolts.The foregoing is shown in the table.


IØYLI wrote me that his version of the power supply needed 12 kOhm to obtain a higher voltage. His versions are:

p/n 379123-001

MODEL: ATSN 7001044-Y000 REV:  06M
serie HSTNS - pro1  BUILD: OC  ( o  DC)
p/n  380624-001

A German ham had me already reported a similar action for increasing voltage. Apparently there is still a difference in the types of DPS-800GB A, DPS-800GB 1A and DPS-800GB 2A.




The interference occurs every multiple of 70 to 100 kHz if the sypply is used for a transceiver. The frequency is voltage-dependent. Noise level at 160 m is strongest and it decrease at higher bands. At 20 meters, it is not so annoying.

It is not excluded that noise can be suppressed or eliminated with filters in feeding cables. For a test I temporarily used a current balun from an antenna system as suppression filter. The interference continued but was decreased so that receiving was not bothersome. Presumably a better suited filter will solve the problem.




Positive and negative terminals installed.

PCB's tracks of top and bottom, of respective #ground and #+12V are connected internally. Further the PCB has a conductive intermediate layer of the same polarity.

For practical use terminals are mounted on a brass hook profile wich is soldered to the top of the PCB. For better conduction the tracks on the bottom are soldered with copper foil to the bracket.


The two small fans make little noise and still works so well that during a ten minute load of 85 Amp the housing was only lukewarm. The power supply is a powerhouse in a very small size!